
7 AD-AO S 050 CLEMSON UN 
h S C DEPT OF MATHEMATICAL 

SCIENCES 
F/6 12/1

POSITIVE DEPENDENCE IN MULTI VARIATE DISTRIBUTIONS.U

UNL APR 00 K ALAM, K M LAL SAXENA N00OIS 75-C 0h451

UNCLASSIFIEO N1A N L



1.0 2.

11111L25 1.4 1.

MICROCOPY RESOLUTION TEST CHART
NA11OAL BUJREAU OF STANDARDS-] 963.1



fThis document has been approved
istrliitln isunliittdfor public release and sale: t



POSITIVE DEPENDENCE IN
MULTIVARIATE DISTRIBUTIONS

KHURSHEED ALAM /
K. M. LAL SAXENA

/J ,

/ f

/

CLEMSON UNIVERSITY

REPORT N116

TECHNICAL REPORT #335

APRIL, 1980

RESEARCH SUPPORTED IN PART BY

THE OFFICE OF NAVAL RESEARCH
-ThE d-ument has beft pproyed

jlta"00msai;

is'



POSITIVE DEPENDENCE IN MULTIVARIATE DISTRIBUTIONS

Khursheed Alam and K. M. Lal Saxena

Clemson University and University of Nebraska-Lincoln

ABSTRACT

This paper gives some new results on positive dependence

between random variables which are jointly normally distributed

with special reference to certain inequalities of the form

P(XQeA,YXeB) > P(XjeA)P(YXB), where A and B are given sets

and X and Y are random vectors. Some results are also

given on statistical dependence between quadratic forms.
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F 1.

1. Introduction

Let X be a random vector and let Xl.,,,,.Xk be its partition

into k sub-vectors. Let Pt denote the dimension of Xt,t=l,...,k, and

let Et be a subset of R Pt, where R = (-co). The statistical

dependence between the sub-vectors, given by the inequality

k
(1.1) P{t e Et, t=l,...,k} > H P(X t E t)

t=l

is of interest in certain problems, such as, life testing and

interval estimation. The above inequality has been considered
by Dunn (1958), Dykstra (1979), Khatri (1967, 1970), Sidak (1967,

1968, 1975), Scott (1967), Slepian (1962) and Tong (1970), for

the case in which the distribution of X is multivariate normal.

In this paper we give some new results on the inequality.

Let the distribution of X be multivariate normal with mean

vector 0 and covariance matrix E = (aij), and let Pt = 1,

t=l,...,k. If each Et is an interval symmetric about the origin,

then the inequality (1.1) follows from Theorem 1 of Sidak (1968).

For the one sided case, that is, when each Et is an interval

of the form (--,at) or each Et is of the form (at,-), then the

inequality holds if aij > 0 (i~j) by a result due to Slepian

(1962). The reverse inequality holds if aij < 0 (i~j).

Let (Z ij) be the partition of Z, where 4ij denotes the

covariance between Xi and X j. Let k - 2 and let r denote the

rank of Z12. The inequality (1.1) follows from Theorem 1 of

Khatri (1967) if r 1 1 and E1 and E2 are convex sets, symmetric

<sow.-



2.

about the origin. In a subsequent paper, Khatri (1970) claimed

that the inequality holds also for r > 1. However, the proof

of the generalization given by the author was found incorrect

by Sidak (1975). On the other hand, Dykstra (1979) showed

that the inequality holds for r > 1 if E is a convex symmetric

set and E2 is the interior of an ellipsoid given by X2AX2  c,

where AZ2 2 is an idempotent matrix. In this paper, we generalize

the result of Dykstra. Moreover, we show that the inequality

(1.1) holds for r > 1 if Z satisfies a given condition and E1

and E2 are both increasing (decreasing) sets,where a set E is

said to be an increasing (decreasing) set if X E E and y>-(<)x

then y e E,where >(.) means> (<) component wise.

Very few results are known for the case in which the

underlying distribution is not assumed to be multivariate normal.

A set of random variables Y'...,Yn are said to be associated

if the covariance between f(Yl,...,Yn) and g(Yl,...,Yn) is non-

negative for all functions f and g which are nondecreasing in

each argument. The variablesYl,...,Yn are said to be positively

orthant dependent if the following inequality holds for all

values ai.

n
(1.2) P(Yi < ai, i=l,...,n) L 11 P(Yi < a.).

i-i

The above inequality holds if Y,...',Yn are associated by Theorem

S.l of Esary, Proschan and Walkup (1967). In Section 3 we show sta-

tistical dependence, including the association between certain
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quadratic forms, and in Section 4 we introduce the concept of

negative association.

2. Probability Inequalities

Consider the inequality (1.1) for k=2. Let X1 ,X2 be jointly

normally distributed with mean vector 0 and covariance matrix E

Let E be a convex set symmetric about the origin and let E2 denote1J

the interior of the ellipsoid given by 22AX 2 < c, where A is

a positive semi-definite matrix. We shall show that the inequality

(1.1) holds under certain conditions on A and Z. First we give

a lemma whose proof is given at the end of the section. The

lemma is required in the proof of Theorems 2.1 and 2.2 below.

Lemma 2.1 Given s > r = rank (Z12 ), there exist matrices Z13

and Z32 of order plxs and sxP 2 ,respectively,such that E1 2lIE32 .

Moreover, 11 - E13 31 and Z22 - E23E32 are positive definite,

where 31 1 ZI3 and Z23 - 3 2 .

Let SS' - E - E1E1and TT' = Z2 - z23E 32, where Zl3

and Z23 are constructed form Lemma 2.1. Then the joint distribusion

of X 1  2 can be represented as follows:

11-SU + 13W(2.1)

-1 TV '23 W

where U, V and W are normally distributed independent random

vectors, U 2 N(2,I p), VZ' N(2, I P2) and W N(O,I s). Clearly,

I X 2 are conditionally independent given W.

L,



Theorem 2.1. The inequality (1.1) holds for k=2 if (i)

A(E22 - E23 3 2) is an idempotent matrix and (ii) Z32AZ23 - nIs

for some positive number n, where Z23 is constructed from Lemma 2.1.

Proof. Let Q = Ww and Y - Z13 Q From the sufficiency,

completeness and invariance considerations we find that Y is

independent of Q. From the representation (2.1) we have that
1

given Wi, 2I is normally distributed with mean vector Y Q1 and

X2AX 2 is distributed according to a noncentral chi-square distribu-

tion with noncentrality parameter equal to nQ. Thus

(2.2) P(XIyEj,1 2cE 2) = EwP(elEIW) P(X2 E2 I)

= EQ[P(X 2eE2IQ) EyP(XjcE1I),Q)]

Clearly, P(12cE2IQ) is a decreasing function of Q. Moreover

Ey(XIeEIIYQ) is a non increasing function of Q by Theorem 1

of Anderson (1955). Therefore by Kimball's inequality the quan-

tity on the right side of (2.2) is greater than or equal to

EQP(2 2EE2 IQ). EQ,YP(2eIElIjQ)- P(eE 1 ) P(12cE2)

The theorem is proved.

Corollary 2.1. The inequality (1.1) holds for k-2 if A- 22 -1p2

Proof: Let e be a small positive number such that Z

is a positive definite matrix. Then Zl3(l-) .l2 and " a

(1-E) 1I P2 satisfy the conditions of Lemma 2.1. It is sufficient to

p2  -1prove the corollary for A - P2I Now the conditions of Theorem 2.1

_' P2'mm



are satisfied for A e i 2 Ip and n =(1 6)/. HenceP222 P2
the inequality (1.1) holds. A slightly different proof of the

above corollary has been given by-Dykstra (1979).

Corollary 2.2. The inequality (1.1) holds for k-2, if AZ22
is an idempotent matrix.

The proof of Corollary 2.2 is omitted.

There is a large class of matrices Z and A for which Theorem 2.1

is applicable. An example is given here for illustration:

Let

25 -4 0 6 2 0 0 0 0 4 4

-4I = 2 1 12 22 = 6 0 0 6 -2 -2
012 25 0.0 6 244 0 0

1 (2 (62 -4-2 )

and A I4, 113 = 2 ' 123

Note that Corollary 2.2 is not applicable since AZ22 is not an idem-Ipotent matrix.
Next, we consider the case in which E1 and E2 are both decreas-

ing or both increasing sets. A matrix is called nonnegative if its

elements are nonnegative. Let Z13 and Z23 be constructed from Lemma 2.1.

Theorem 2.2. The inequality (1.1) holds for k-2, if Z and Z23 are

nonnegative matrices and E1 and E2 are decreasing (increasing)

sets.

Proof: From the representation (2.1) we have

(2.3) P(XEl ,1 2 E2 ) - EWP(lEl IW)p(X 2 E2 W). '
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Let El and E2 be decreasing sets. Since El is a decreasing set

and EX1 1W 10, where Z1, is a nonnegative matrix, it follows

that P(XIE 1IW) is non-increasing in each component of W. Similar-

ly P(X2 E2 1W) is non-increasing in each component of W. As the

components of W, being independent, are associated we have

(2.4) EwP(jI-EI1W)P(X 2EE2IW) > EwP(jIEElW)EwP( 2 1E2IW)

=P(X 1 E1)P(12 E2)

The conclusion of the theorem follows from (2.3) and (2.4). The

above result is proved similarly for the case in which E1 and E,

are increasing sets.

Corollary 2.3. The inequality (1.1) holds for k=2 if E., is a

nonnegative matrix of rank 1.

Proof: Let Z 12 can be written as Xp-where X is a plxl vector

and ' is a P2xl vector. Since Xi i> 0 for all i and j, all non-

zero components of X and P have the same sign. So it may be assumed

that X and are nonnegative vectors. The conditions of Theorem 2.2

are satisfied by letting El3 a X and E23 ' y"

Corollary 2.4. Let Xl,...,Xk be jointly normally distributed

and let their covariance matrix be nonnegative. Then X1,... ,Xk are

positively orthant dependent.

The above corollary follows directly from Corollary 2.3.

It is a special case of a more general result due to Slepian (1962).

The proof is omitted.

A repeated application of Corollary 2.3 shows that the

inequality (1.1) holds for k > 2 in the following cases,where the

ma d
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covariance matrix I is given by (i) ai 1, i, a p > 0, i j,

(ii) j l ' j l for all i and j, (iii) aii 1 1, Pij = p > 0 for

I i-iJ - 1, zero otherwise.

A matrix A is said to be completely positive if A = PP" where P

is a nonnegative matrix. Let A be of order n x n and let

A(i, s,...,nlj,s,...,n) denote the minor of A with rows indexed by

i,s,...,n and columns indexed by j,s,...,n. A sufficient condi-

tion for a nonnegative positive definite matrix to be completely

positive is that A(i,s,...,nlj,s,... ,n) > 0 for 1 < i, j < s and

2 < s < n by Corollary 5.1 of Markham (1971).

Corollary 2.5. The inequality (1.1) holds if Z(i,s,...,nlj,s,...,n)>O

for 1 < i, j < s, and 2 < s < n ,where n denotes the order of Z.

Proof: Let k = 2. The conditions of the corollary imply that I is

completely positive and so also is Z-eIn for sufficiently small e*> 0.

Therefore let I -EIn = PP', where P is nonnegative. Let P1 ' P2

be a partition of P where P1 is of order plxn and P2 is of orderIP2xn. Then 2= PIP, Ell = - P 722 - EIp 2 = P2P • Let

I = P and23 P Then Il2 I 3I32. Moreover I I

and 1 22 - 123E32 are positive definite.Then the inequality (1.1)

follows from the application of Theorem 2.2. A repeated application

of the above proof yields the inequality for k > 2.

Proof of Lemma 2.1. Let Xl,...,Xr denote the positive characteristic

roots of I 2Z22 1  Since I is positive definite, it follows

that 11 S22 21 is positive definite. Therefore 0 < X < 1

for i -
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Let P1 and P2 be non-singular matrices such that PjEZIP 1

Im and P=22P2 =I n  By the singular value decomposition theorem

there exist orthogonal matrices Q, and Q2, such that

QiP I'2P 2Q2 o D

where D = (d. ) is given by dij = 0, i#j, d 0i2 for i=l,...,r
1J 1J i i

and dii = 0 for i > r, i=l,...,m and j=l,...,n. Let Am' s = (a ij)

denote an mxs matrix in which a = 0 for i#j, ai 1 4

ij i
i=l,...,r, ii= 0 for i > r, i1,...,m, j-l,...,s. Now let

-1

13 = (PII)QIAms and E23 = (P2l) Q2An,s

since A An s = D, we have that Z = 1331. Furthermore the
m,s n 1 s 1

matrix Z11 - E13 31 is positive definite since it can be written

as

Ell - Z13E31 = -P-1QICQIPI

where C is an mxm diagonal matrix, the diagonal elements being
1/2 1i/2

l-X1  l-,,r Similarly the matrix Z22-z2,E32 is positive

definite.

3. Association of Quadratic Forms

Let Y be normally distributed with mean vector 0 and covariance

matrix Z . In this section we give some results on the statistic'"

dependence among the quadratic forms Y" Ai , i-l,...,k, where

Ai are positive semidefinite matrices.
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Theorem 3.1. The correlation between two quadratic forms

Y'A.Y and Y'AY is nonnegative.

Proof: By direct computation we have

(3.1) cov(YWAiY,j-AY) = 2 trace A iA j E.

Since Ai and Aj are positive semidefinite, the right side of (3.1)

is nonnegative by Theorem 9.1.28 of Graybill (1969).

Remark. If A iZA is positive semidefinite then it can be shown

that the conclusion of the theorem holds without the assumption

that EY = 0.

Association between two random variables implies that the

correlation between the variables is nonnegative. Theorems 3.2 through

3.4 below,give certain conditions for the association of quadratic

forms. We say that the matrices Ai are diagonalized simultaneously

through a non-singular transformation if there exists a non-singular

matrix P such that PAiP'-Di, where Di is a diagonal matrix, i=l,...,k.

Clearly the diagonal elements of each D. are nonnegative. If for

example,AiA = A.Ai for each pair (i,j), then the matrices Ai are

diagonalized simultaneously through an orthogonal transformation.

Theorem 3.2. Let n = k = 2. If A1 and A2 can be diagonalized

simulatenously then Y'AIY and Y'Ak Y are associated.

Proof: Under the conditions of the theorem we can assume without

loss of generality that A1 and A2 are diagonal matrices. Also, z

can be assumed to be a correlation matrix. Let p denote the
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correlation between Y1 and Y2. Now, Y is conditionally distributed,
2)gie .:,as(- 2  1, a non-central chi-square with 1 degree

f freedom and non-centrality parameter 8= p Y? / (1-p2). Thus

the conditional distribution of Y2 given Y2 is stochastically increas-1 gvn2
2 2 2ing in Y . Therefore, Y and Y are associated by theorem 4.7

of Barlow and Proschan (1975). The theorem follows, since Y'AI

and Y'A 2Y are non-decreasing functions of Y and Y .

Suppose that the components of Y can be grouped in pairs,

that is Y = , where each Xi is a two-component vector.

Let each Ai be of order 2 x 2. The proof of theorem 3.1 below

is straightforward.

Theorem 3.3. If X. and X. are ncorrelated (i~j), and AI,...,Ak

can be diagonalized simultaneously then XIAIX1 ,...,XkAk'k are

4. associated.

Suppose that the matrices A. commute pairwise with respect
i

to Z , that is A i A J = A .ZA. (i~j). Then through a non-singular
transformation we can write Y'A.Y = 2 where

- - j=l 13 3
aij > 0 and Z1 ,...,Zn are independent normal random variables.

Therefore, we have the following result.

Theorem 3.4. If AI,... ,Ak commute pair wise with respect to ' then

YAIX,. .. YAkY are associated.

The property of association of random variables is observed

in many statistical models. Consider, for example, the model

Yi Yi I +  i , i-1,2, .....

for a time series, where Ei are independent random variables. The

'1



distribution of Yi given YI,...,Yi_I depends on Yi-l only, by the

Markov property. If p > 0 then the conditional distribution is

stochastically increasing in sequence. On the other hand, if the

distribution of each Ei is unimodal and symmetric about the origin

then the conditional distribution of Y given Y 2 ' 2_ is stochas-

tically increasing in and thus the joint distribution ofi-
Y1,...,Y nis stochastically increasing in sequence. It follows

from theorem 4.7 of Barlow and Proschan (1975) that YI,...,Yn are

associated if p > 0, and that Y2.. ,Y2 are associated if the dis-

tribution of each Ei is unimodal and symmetric about the origin.

4. Negative Association

The definition of association between a set of random vari-

ables, given above, implies positive dependence in the sense that

large (small) values of any subset of the given variables are

i associated with large (small) values of any other subset of the
variables. A weaker form of dependence and of the opposite kind

is implied by the definition of negative association, given below.

The random variables X1,...,Xk (k>2) are negatively associated if

the covariance, when it exists, between f(Y) and g(Z) is non-

negative for all nondecreasing functions f and g, where Y and Z are

subvectors representing a partition of the given variables into two

subsets. Two examples of negatively associated random variables

are given below.

Example 4.1. Let X - (X1 ... ,Xk) be distributed according

to the multivariate normal distribution with mean vector 0 and
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covariance Z = (a..), where a.. = 1, aij = -p (i~j) and 0 < p <
-1 11 ii

(k-) 1  Let the subvectors Y and Z be obtained through a parti-

tion of the components of X. As the mean of the conditional dis-

tribution of Y given Z is for each component, a linear function of

the components of Z with negative coefficients, the conditional

distribution of Y given Z is stochastically decreasing in each

component of Z. Therefore, the conditional expection of f(Y)

given Z is nondecreasing in the components of Z for any non-

decreasing function f. An application of Kimball's inequality

gives

E f( )gZ) < E f()) E g(Z).

Therefore, the random variables XI,...,Xk are negatively associated.

Example 4.2. Let the random variables XI,... ,Xk be jointly

distributed according to the Dirichlet distribution, given by

the density function

rv i ...+vk) 1-1  vk-I
f(xl, ...,xk) 1 v r)...(v k) 1 xk

k
where xi > 0 (i=l,...,k), xi - 1. The Dirichlet distribution1 ~i=l1

can be represented as follows:

Xi  - Vi / S , i=l,...,k

where V1,...,Vk are independent gamma random variables with

k
l...,' k degrees of freedom, respectively, and S = V. From

the above representation it follows that the conditional distribution

,.)
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of Y given Z is stochastically decreasing in Z, where Y and Z

are defined as in the previous example. Therefore, the random

variables X1 ,... ,Xk are negatively associated. The Dirichlet

distribution arises in goodness of fit tests based on sample

spacings (seee.g. Pyke (1965)).

It is easy to show that the following sets of random vari-

ables are negatively associated: Ci) independent random variables,

(ii) nondecreasing functions gi(Xi) of negatively associated random

variables Xi s , (iii) union of independent sets of negatively

associated random variables. Also, it follows directly from the

definition of negative association that the reverse inequality

holds in (1.1) for k = 2 if E1 and E2 are nondecreasing sets and

the components of X are negatively associated.

i'1

.1
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